Eugene Wigner

About Eugene Wigner

Who is it?: Physicist & Mathematician
Birth Day: November 17, 1902
Birth Place: Budapest, Hungary, United States
Died On: January 1, 1995(1995-01-01) (aged 92)\nPrinceton, New Jersey, US
Birth Sign: Sagittarius
Citizenship: American (post-1937) Hungarian (pre-1937)
Alma mater: Technical University of Berlin
Known for: Bargmann–Wigner equations Law of conservation of parity Wigner D-matrix Wigner–Eckart theorem Wigner's friend Wigner semicircle distribution Wigner's classification Wigner distribution function Wigner quasiprobability distribution Wigner crystal Wigner effect Wigner energy Wigner lattice Relativistic Breit–Wigner distribution Modified Wigner distribution function Wigner–d'Espagnat inequality Gabor–Wigner transform Wigner's theorem Jordan–Wigner transformation Newton–Wigner localization Wigner-Inonu contraction Wigner–Seitz cell Wigner–Seitz radius Thomas-Wigner rotation Wigner–Weyl transform Wigner-Wilkins Spectra 6-j symbol 9-j symbol
Spouse(s): Amelia Frank (1936–1937; her death) Mary Annette Wheeler (1941–1977; her death; 2 children) Eileen Clare-Patton Hamilton (1 child) (died November 21, 2010)
Awards: Medal for Merit (1946) Franklin Medal (1950) Enrico Fermi Award (1958) Atoms for Peace Award (1959) Max Planck Medal (1961) Nobel Prize in Physics (1963) National Medal of Science (1969) Albert Einstein Award (1972) Wigner Medal (1978)
Fields: Theoretical physics Atomic physics Nuclear physics Solid-state physics
Institutions: University of Göttingen University of Wisconsin–Madison Princeton University Manhattan Project
Doctoral advisor: Michael Polanyi
Other academic advisors: László Rátz Richard Becker
Doctoral students: John Bardeen Victor Frederick Weisskopf Marcos Moshinsky Abner Shimony Edwin Thompson Jaynes Frederick Seitz Conyers Herring Frederick Tappert J O Hirschfelder

Eugene Wigner Net Worth

Eugene Wigner was born on November 17, 1902 in Budapest, Hungary, United States, is Physicist & Mathematician. Eugene Paul "E. P." Wigner was a Hungarian American theoretical physicist and mathematician and a joint winner of the Nobel Prize for his contribution to nuclear physics. From the beginning of his career, Wigner had made many significant cross-disciplinary discoveries. He established the importance of symmetry principles in quantum mechanics and was one of the first scientists to apply quantum mechanics to the theory of solids and chemical kinetics. He also led the endeavour to design the first high-powered reactors to be used in World War II. He was responsible for the full development of the R-matrix theory for nuclear reactions. More than forty doctoral students studied theoretical physics under his supervision at the Princeton University. As a statesman, he lobbied for civil defense. Later in life, he became inclined towards the philosophy of science. Wigner held memberships in different associations like the American Philosophical Society, the American Mathematical Society, the American Association of Physics Teachers, the Royal Netherlands Academy of Sciences and Letters, and the Austrian Academy of Sciences. He was also a corresponding member of the Gesellschaft der Wissenschaften, Gottingen, and foreign member of the Royal Society of Great Britain. In his final years, he remained active in fostering cultural and scientific ties between Hungarians and the world.
Eugene Wigner is a member of Scientists

💰 Net worth: Under Review

Some Eugene Wigner images

Biography/Timeline

1902

Wigner Jenő Pál was born in Budapest, Austria-Hungary on November 17, 1902, to middle class Jewish parents, Elisabeth (Einhorn) and Anthony Wigner, a leather tanner. He had an older sister, Bertha, known as Biri, and a younger sister Margit, known as Manci, who later married British theoretical Physicist Paul Dirac. He was home schooled by a professional Teacher until the age of 9, when he started school at the third grade. During this period, Wigner developed an interest in mathematical problems. At the age of 11, Wigner contracted what his doctors believed to be tuberculosis. His parents sent him to live for six weeks in a sanatorium in the Austrian mountains, before the doctors concluded that the diagnosis was mistaken.

1915

Wigner's family was Jewish, but not religiously observant, and his Bar Mitzvah was a secular one. From 1915 through 1919, he studied at the secondary grammar school called Fasori Evangélikus Gimnázium, the school his father had attended. Religious education was compulsory, and he attended classes in Judaism taught by a rabbi. A fellow student was János von Neumann, who was a year behind Wigner. They both benefited from the instruction of the noted mathematics Teacher László Rátz. In 1919, to escape the Béla Kun communist regime, the Wigner family briefly fled to Austria, returning to Hungary after Kun's downfall. Partly as a reaction to the prominence of Jews in the Kun regime, the family converted to Lutheranism. Wigner explained later in his life that his family decision to convert to Lutheranism "was not at heart a religious decision but an anti-communist one". On religious views, Wigner was an atheist.

1920

After graduating from the secondary school in 1920, Wigner enrolled at the Budapest University of Technical Sciences, known as the Műegyetem. He was not happy with the courses on offer, and in 1921 enrolled at the Technische Hochschule Berlin (now Technical University of Berlin), where he studied chemical engineering. He also attended the Wednesday afternoon colloquia of the German Physical Society. These colloquia featured such luminaries as Max Planck, Max von Laue, Rudolf Ladenburg, Werner Heisenberg, Walther Nernst, Wolfgang Pauli, and Albert Einstein. Wigner also met the Physicist Leó Szilárd, who at once became Wigner's closest friend. A third experience in Berlin was formative. Wigner worked at the Kaiser Wilhelm Institute for Physical Chemistry and Electrochemistry (now the Fritz Haber Institute), and there he met Michael Polanyi, who became, after László Rátz, Wigner's greatest Teacher. Polanyi supervised Wigner's DSc thesis, Bildung und Zerfall von Molekülen ("Formation and Decay of Molecules").

1926

Wigner returned to Budapest, where he went to work at his father's tannery, but in 1926, he accepted an offer from Karl Weissenberg at the Kaiser Wilhelm Institute in Berlin. Weissenberg wanted someone to assist him with his work on x-ray crystallography, and Polanyi had recommended Wigner. After six months as Weissenberg's assistant, Wigner went to work for Richard Becker for two semesters. Wigner explored quantum mechanics, studying the work of Erwin Schrödinger. He also delved into the group theory of Ferdinand Frobenius and Eduard Ritter von Weber.

1927

Wigner received a request from Arnold Sommerfeld to work at the University of Göttingen as an assistant to the great Mathematician David Hilbert. This proved a disappointment, as the aged Hilbert's abilities were failing, and his interests had shifted to logic. Wigner nonetheless studied independently. He laid the foundation for the theory of symmetries in quantum mechanics and in 1927 introduced what is now known as the Wigner D-matrix. Wigner and Hermann Weyl were responsible for introducing group theory into quantum mechanics. The latter had written a standard text, Group Theory and Quantum Mechanics (1928), but it was not easy to understand, especially for younger physicists. Wigner's Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (1931) made group theory accessible to a wider audience.

1930

In the late 1930s, Wigner extended his research into atomic nuclei. By 1929, his papers were drawing notice in the world of physics. In 1930, Princeton University recruited Wigner for a one-year lectureship, at 7 times the salary that he had been drawing in Europe. Princeton recruited von Neumann at the same time. Jenő Pál Wigner and János von Neumann had collaborated on three papers together in 1928 and two in 1929. They anglicized their first names to "Eugene" and "John", respectively. When their year was up, Princeton offered a five-year contract as visiting professors for half the year. The Technische Hochschule responded with a teaching assignment for the other half of the year. This was very timely, since the Nazis soon rose to power in Germany. At Princeton in 1934, Wigner introduced his sister Manci to the Physicist Paul Dirac, whom she married.

1931

In these works, Wigner laid the foundation for the theory of symmetries in quantum mechanics. Wigner's theorem proved by Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT symmetry are represented on the Hilbert space of states. According to the theorem, any symmetry transformation is represented by a linear and unitary or antilinear and antiunitary transformation of Hilbert space. The representation of a symmetry group on a Hilbert space is either an ordinary representation or a projective representation.

1937

Princeton did not rehire Wigner when his contract ran out in 1936. Through Gregory Breit, Wigner found new employment at the University of Wisconsin. There he met his first wife, Amelia Frank, who was a physics student there. However she died unexpectedly in 1937, leaving Wigner distraught. He therefore accepted a 1938 offer from Princeton to return there. Wigner became a naturalized citizen of the United States on January 8, 1937, and he brought his parents to the United States.

1939

Although he was a professed political amateur, on August 2, 1939, he participated in a meeting with Leó Szilárd and Albert Einstein that resulted in the Einstein–Szilárd letter, which prompted President Franklin D. Roosevelt to initiate the Manhattan Project to develop atomic bombs. Wigner was afraid that the German nuclear weapon project would develop an atomic bomb first, and even refused to have his fingerprints taken because they could be used to track him down if Germany won. "Thoughts of being murdered," he later recalled, "focus your mind wonderfully."

1941

On June 4, 1941, Wigner married his second wife, Mary Annette Wheeler, a professor of physics at Vassar College, who had completed her Ph.D. at Yale University in 1932. After the war she taught physics on the faculty of Rutgers University's Douglass College in New Jersey until her retirement in 1964. They remained married until her death in November 1977. They had two children, David Wigner and Martha Wigner Upton.

1942

During the Manhattan Project, Wigner led a team that included Alvin M. Weinberg, Katharine Way, Gale Young and Edward Creutz. The group's task was to design the production nuclear reactors that would convert uranium into weapons grade plutonium. At the time, reactors existed only on paper, and no reactor had yet gone critical. In July 1942, Wigner chose a conservative 100 MW design, with a graphite neutron moderator and water cooling. Wigner was present at a converted rackets court under the stands at the University of Chicago's abandoned Stagg Field on December 2, 1942, when the world's first atomic reactor, Chicago Pile One (CP-1) achieved a controlled nuclear chain reaction.

1943

Wigner was disappointed that DuPont was given responsibility for the detailed design of the reactors, not just their construction. He threatened to resign in February 1943, but was talked out of it by the head of the Metallurgical Laboratory, Arthur Compton, who sent him on vacation instead. As it turned out, a design decision by DuPont to give the reactor additional load tubes for more uranium saved the project when neutron poisoning became a Problem. Without the additional tubes, the reactor could have been run at 35% power until the boron impurities in the graphite were burned up and enough plutonium produced to run the reactor at full power; but this would have set the project back a year. During the 1950s, he would even work for DuPont on the Savannah River Site. Wigner did not regret working on the Manhattan Project, and sometimes wished the atomic bomb had been ready a year earlier.

1946

Wigner accepted a position as the Director of Research and Development at the Clinton Laboratory (now the Oak Ridge National Laboratory) in Oak Ridge, Tennessee in early 1946. Because he did not want to be involved in administrative duties, he became co-director of the laboratory, with James Lum handling the administrative chores as executive Director. When the newly created Atomic Energy Commission (AEC) took charge of the laboratory's operations at the start of 1947, Wigner feared that many of the technical decisions would be made in Washington. He also saw the Army's continuation of wartime security policies at the laboratory as a "meddlesome oversight", interfering with research. One such incident occurred in March 1947, when the AEC discovered that Wigner's Scientists were conducting experiments with a critical mass of uranium-235 when the Director of the Manhattan Project, Major General Leslie R. Groves, Jr., had forbidden such experiments in August 1946 after the death of Louis Slotin at the Los Alamos Laboratory. Wigner argued that Groves's order had been superseded, but was forced to terminate the experiments, which were completely different from the one that killed Slotin.

1947

Feeling unsuited to a managerial role in such an environment, he left Oak Ridge at the end of summer in 1947 and returned to Princeton University, although he maintained a consulting role with the facility for many years. In the postwar period he served on a number of government bodies, including the National Bureau of Standards from 1947 to 1951, the mathematics panel of the National Research Council from 1951 to 1954, the physics panel of the National Science Foundation, and the influential General Advisory Committee of the Atomic Energy Commission from 1952 to 1957 and again from 1959 to 1964. He also contributed to civil defense.

1960

Near the end of his life, Wigner's thoughts turned more philosophical. In 1960, he published a now classic article on the philosophy of mathematics and of physics, which has become his best-known work outside technical mathematics and physics, The Unreasonable Effectiveness of Mathematics in the Natural Sciences. He argued that biology and cognition could be the origin of physical concepts, as we humans perceive them, and that the happy coincidence that mathematics and physics were so well matched, seemed to be "unreasonable" and hard to explain. His original paper has provoked and inspired many responses across a wide range of disciplines. These included Richard Hamming in Computer Science, Arthur Lesk in Molecular Biology, Peter Norvig in data mining, Max Tegmark in Physics, Ivor Grattan-Guinness in Mathematics, and Vela Velupillai in Economics.

1963

Wigner was awarded the Nobel Prize in Physics in 1963 "for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles". The prize was shared that year, with the other half of the award divided between Maria Goeppert-Mayer and J. Hans D. Jensen. Wigner professed that he had never considered the possibility that this might occur, and added: "I never expected to get my name in the newspapers without doing something wicked." He also won the Franklin Medal in 1950, the Enrico Fermi award in 1958, the Atoms for Peace Award in 1959, the Max Planck Medal in 1961, the National Medal of Science in 1969, the Albert Einstein Award in 1972, and the eponymous Wigner Medal in 1978. In 1968 he gave the Josiah Willard Gibbs lecture.

1977

Mary died in November 1977. In 1979, Wigner married his third wife, Eileen Clare-Patton (Pat) Hamilton, the widow of Physicist Donald Ross Hamilton, the Dean of the Graduate School at Princeton University, who had died in 1972. In 1992, at the age of 90, he published his memoirs, The Recollections of Eugene P. Wigner with Andrew Szanton. In it, Wigner said: "The full meaning of life, the collective meaning of all human desires, is fundamentally a mystery beyond our grasp. As a young man, I chafed at this state of affairs. But by now I have made peace with it. I even feel a certain honor to be associated with such a mystery." In his collection of essays Symmetries and Reflections – Scientific Essays (1995), he commented: "It was not possible to formulate the laws of quantum mechanics in a fully consistent way without reference to consciousness."

1995

Wigner died of pneumonia at the University Medical Center in Princeton, New Jersey on 1 January 1995. He was survived by his wife Eileen and children Erika, David and Martha, and his sisters Bertha and Margit.

2013

Through Manhattan project funding, Wigner and Leonard Eisenbud (de) also developed an important general approach to nuclear reactions, the Wigner–Eisenbud R-matrix theory, which was published in 1947.